Sofialiaqat
8 min readSep 10, 2023

Article all countries dataset visualizations and analysis with python:

# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# You can load your dataset into a pandas DataFrame. Replace 'your_data.csv' with your actual data file.
countries = pd.read_csv('/content/drive/MyDrive/All Countries.csv')

# Data Overview
# Display basic information about the dataset
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the actual path or URL of your dataset.
countries = pd.read_csv('/content/drive/MyDrive/All Countries.csv')

# Data Overview
# Display basic information about the dataset
countries = pd.read_csv('/content/drive/MyDrive/All Countries.csv')


# Summary statistics
# Get summary statistics for numerical columns
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
print(data.describe())

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")


# Missing Value Analysis
# Check for missing values in the dataset
# Import necessary libraries
import pandas as pd

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
countries = pd.read_csv('/content/drive/MyDrive/All Countries.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")

# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")


# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

try:
# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")

plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

# Don't forget to install the required libraries if you haven't already:
# pip install pandas numpy matplotlib seaborn


# Summary statistics
# Get summary statistics for numerical columns
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")


# Missing Value Analysis
# Check for missing values in the dataset
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")

# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Visualization
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")


# Visualization
# Let's assume you want to visualize some aspects of the data.
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

try:
# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Additional analysis and visualization
# ...

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")

# Visualization (outside the try-except block)
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

try:
# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

# Additional analysis and visualization
# ...

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")

# Visualization (outside the try-except block)
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
import seaborn as sns
import matplotlib.pyplot as plt

# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
# Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load your dataset
# Replace 'your_data.csv' with the correct file path or URL of your dataset.
try:
data = pd.read_csv('your_data.csv')

# Data Overview
# Display basic information about the dataset
print(data.info())

# Summary statistics
# Get summary statistics for numerical columns
summary_stats = data.describe()
print("Summary Statistics:\n", summary_stats)

# Missing Value Analysis
# Check for missing values in the dataset
missing_values = data.isnull().sum()
print("Missing Values:\n", missing_values)

except FileNotFoundError:
print("File not found. Please provide the correct file path.")
except Exception as e:
print(f"An error occurred: {str(e)}")

# Visualization (moved outside the try-except block)
if 'data' in locals():
# Example: Plotting a histogram of agricultural land distribution
plt.figure(figsize=(10, 6))
sns.histplot(data['agricultural_land'], bins=20, kde=True)
plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done here.
else:
print("Data not loaded. Please check the data loading process.")

plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done here.

plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done here.

plt.title('Agricultural Land Distribution')
plt.xlabel('Agricultural Land')
plt.ylabel('Frequency')
plt.show()

# Additional visualization and analysis can be done for other columns as needed.

# Export Data
# If you want to save your cleaned and processed data to a new CSV file
# data.to_csv('cleaned_data.csv', index=False)

# Further analysis and visualization can be done based on your specific requirements.

# Don't forget to install the required libraries if you haven't already:
# pip install pandas numpy matplotlib s
Sofialiaqat
Sofialiaqat

Written by Sofialiaqat

python developer Data science I write Article on Machine Learning| Deep Learning| NLP | Open CV | AI

No responses yet